Thursday, October 30, 2008

U.S. and Soviet spooks studied paranormal powers to find a Cold War advantage

by

Larry Greenemeier in Sciam.com
The Defense Advanced Research Projects Agency (DARPA) is well known for pushing the boundaries of science and technology in search of ways to give the U.S. military an edge—robotic pack animalsself-navigating vehicles and plant-based jet fuel, to name a few. Less well known is the agency's Cold War-era investigation into how paranormal phenomena likeextrasensory perception might be used by the U.S. to get a leg up on the former Soviet Union and, perhaps more importantly, by the USSR against the United States.

Working with Washington, D.C., think tank RAND Corporation, DARPA determined that paranormal research by the Soviets focused on physical science, engineering and quantifiable results, whereas their U.S. counterparts tended to be psychologists looking instead to explore the human mind. The bottom line, according to a 1973 DARPA-commissioned study entitled "Paranormal Phenomena": "the U.S. has failed to significantly advance our understanding of paranormal phenomena."


As Halloween approaches, the report serves as a reminder of our fascination with paranormal forces (for more on this, visit Sciam.com's "Science of the Occult" in-depth report). The authors were worried that the Soviets might win the race to use the supernatural to its advantage much as they had threatened to win the space race decades earlier when they launchedSputnik. "If paranormal phenomena exist," RAND analysts P. T. Van Dyke and Mario L. Juncosa concluded, "the thrust of Soviet research appears more likely to lead to explanation, control and application than [does] U.S. research."

The authors acknowledge that the study was limited, because it was based on but a sampling of works available at the time. Among them: a decade of abstracts from the parapsychology section of Psychological Abstracts, a print version of the PsycINFO abstract database of psychological literature. They knew even less about Soviet efforts, they admitted, noting that their conclusions on that front were based on a "somewhat impressionistic" sample  and "some not always reliable and frequently imprecise reports of Western visitors to the Soviet Union."

Soviet research on telepathy dates from the early 1920s when a program was established at the Institute for Brain Research at Leningrad State University. The Soviets appear to have been fascinated with telepathy, which they called "biological communication," as a ship-to-shore way of communicating with submarines without using electronic equipment. They also considered training their cosmonauts to develop and use precognitive abilities  to "foresee and to avoid accidents in space."


It seems the Soviets also were quite taken with the possibility of psychokinesis (using mental imagery to move objects) as a way of "disrupting the electrical systems associated with an ICBM's [intercontinental ballistic missile] guidance program."

The Soviets were more inclined than American scientists to believe that paranormal phenomena might be the result of "bioenergetics," or the energy given off by the metabolic processes of living things. This theory stated that people exuded "bioplasma," (a theoretical energy field) that, under certain conditions, was capable of emitting charged coherent radiation beyond the body surface in the form of electrons and possibly protons. 

Although the Soviets did not reach a consensus on the existence of bioplasma, RAND concluded, "the very pursuit of this theory indicates that Soviet parapsychologists were attempting to explain alleged paranormal phenomena with a greater degree of specificity than their Western counterparts."

(Images courtesy of iStockphoto; Copyright: Duncan Walker and RAND Corp.)

Note: The Article is very interesting as it provides some information on how the THINK TANK of the two countries, scared of each other, were working during cold war days.


Sunday, October 26, 2008

कैग ने गृह मंत्रालय की खिंचाई की



Oct 26, 02:27 pm

नई दिल्ली। भारत के नियंत्रक एवं महालेखा परीक्षक [कैग] ने राष्ट्रीय सुरक्षा पर मंत्री समूह [जीओएम] के आदेशों का उल्लंघन कर बड़ी संख्या में सुरक्षाकर्मियों को मंत्रालयों एवं दूसरे सरकारी कार्यालयों में तैनात करने को लेकर गृह मंत्रालय की खिंचाई की है।

संसद में अपनी रिपोर्ट पेश करते हुए कैग ने कहा कि गृह मंत्रालय ने जीओएम के आदेशों को लागू करने के बजाए बीएसएफ और सीआरपीएफ को मंत्रालय के कामों में लगाया। इसने कहा कि सुरक्षाकर्मियों की तैनाती का विश्लेषण करने पर पाया गया कि विभिन्न रैंकों के सुरक्षाकर्मियों को बड़ी संख्या में मंत्रालयों एवं अन्य सरकारी कार्यालयों में गृह मंत्रालय की अनुशंसा पर तैनात किया गया। कैग की रिपोर्ट में कहा गया है कि बीएसएफ और सीआरपीएफ के मुख्यालयों और इसके महानिदेशक के दिल्ली कार्यालयों में सुरक्षाकर्मियों की संख्या स्वीकृत संख्या की तुलना में बहुत ज्यादा है। ऐसा इसलिए है कि बड़ी संख्या में सुरक्षाकर्मियों को उनके सामान्य कार्यस्थल से हटाकर मुख्यालयों में कई सालों तक उनकी तैनाती कर दी जाती है।

रिपोर्ट में कहा गया है कि बीएसएफ के मामले में अनधिकृत अतिरिक्त सुरक्षाबलों की तैनाती 168 फीसदी है, जबकि सीआरपीएफ के मामले में यह 32 फीसदी है। कैग की रिपोर्ट में बताया गया है कि सुरक्षाकर्मियों को कार्यस्थलों से हटाकर दिल्ली स्थित उनके महानिदेशकों के कार्यालयों में तैनात करने से राजकोष को जबरदस्त हानि हुई। कैग की रिपोर्ट में कहा गया है कि सार्वजनिक क्षेत्र की ईकाईयों को सुरक्षा उपलब्ध कराने वाली सीआईएसएफ को लंबे समय से उसकी सेवा के बदले आठ करोड़ 12 लाख रुपये का बिल भुगतान नहीं किया गया। बिल का भुगतान नहीं करने वालों में एयरपोर्ट अथारिटी आफ इंडिया, हिंदुस्तान आर्गेनिक केमिकल्स और हिंदुस्तान एयरोनोटिक्स लिमिटेड शामिल हैं। कैग ने आईटीबीपी के महानिरीक्षक की भी खिंचाई की है। इसने कहा कि उसके कार्यस्थलों से 30 से 40 गाडि़यों को अवैध तरीके से हटाकर मुख्यालय में तैनात किया गया है। इससे 2002-03 से 2006-07 के बीच पेट्रोल, डीजल और रखरखाव पर एक करोड़ 39 लाख रुपये बर्बाद किए गए।




जलवायु परिवर्तन संस्थान कायम करने की सिफारिश


 
Oct 26, 02:28 pm

नई दिल्ली। संसद की एक समिति ने जलवायु परिवर्तन के प्रभावों से निपटने के मकसद से पृथ्वी विज्ञान मंत्रालय या विज्ञान एवं प्रौद्योगिकी मंत्रालय के तहत एक राष्ट्रीय संस्थान कायम करने की सिफारिश की है।

संसद में हाल में पेश की गई विज्ञान एवं प्रौद्योगिकी और पर्यावरण संबंधी संसदीय स्थायी समिति ने अपनी रिपोर्ट में यह सिफारिश की है। रिपोर्ट में कहा गया है कि जलवायु परिवर्तन के प्रभावों को कम करने और विभिन्न उपाय अपनाने के लिए व्यापक अध्ययन एवं शोध तथा उच्च स्तरीय तकनीकी विशेषज्ञता की जरूरत है।

अन्नाद्रमुक नेता की अध्यक्षता वाली इस समिति ने कहा कि मौसम बदलाव और इसके प्रभावों से निपटने के लिए राष्ट्रीय अनुसंधान एजेंडा की पहल करने की जरूरत है। इसके लिए पृथ्वी विज्ञान मंत्रालय या विज्ञान एवं प्रौद्योगिकी मंत्रालय के तहत अलग से एक राष्ट्रीय जलवायु परिवर्तन संस्थान कायम किया जा सकता है।

दुनिया के तापमान में हो रही वृद्धि और भारत पर इसके प्रभाव के बारे में समिति की रिपोर्ट में कहा गया कि जलवायु परिवर्तन के बारे में इस बात को लेकर चिंताएं हैं कि इससे हिमालयी ग्लेशियर पर विपरीत असर पड़ सकता है और यह पिघल सकते हैं। कुछ अनुमानों के अनुसार हमारे ग्लेशियर पिछले 40 सालों में 21 प्रतिशत पिघले हैं। समिति ने कहा कि पिछले पचास सालों में हालांकि कई राष्ट्रीय संस्थानों और विश्वविद्यालयों ने विभिन्न प्रयास किए हैं, लेकिन फिर भी भारतीय ग्लेशियरों पर दुनिया में सबसे कम अध्ययन हुआ है।

संसदीय समिति ने कहा कि हिमालयी ग्लेशियरों के बारे में अनुसंधान प्रयासों को मजबूती देने की आवश्यकता है। रिपोर्ट में कहा गया कि मध्य दक्षिण पूर्व एवं दक्षिण पूर्व एशिया में विशेषकर इनकी बड़ी नदियों की घाटियों में ताजे जल की उपलब्धता 2050 तक कम होने का पूर्वानुमान व्यक्त किया गया है। यह सीधे तौर पर हमारे लिए चिंता की बात है। इसमें कहा गया कि एशिया के तटवर्ती क्षेत्र विशेषकर दक्षिण पूर्व एवं दक्षिण पूर्व एशिया के विशाल डेल्टा क्षेत्र में बाढ़ के रूप में समुद्री जल घुस आने की आशंका अधिक है और कई मामलों में नदियों में भी भीषण बाढ़ आने का खतरा है। इन खतरों से हमारे विशाल डेल्टा क्षेत्र विशेषकर सुंदरवन अछूते नहीं रहेंगे।

समिति के अनुसार अनुमान व्यक्त किया जा रहा है कि जलवायु परिवर्तन से तेजी गति से हो रहे शहरीकरण, औद्योगिकीकरण और आर्थिक विकास से जुड़े प्राकृतिक संसाधनों और पर्यावरण पर दबाव बढ़ जाएगा। इसने कहा कि दक्षिण पूर्व एवं दक्षिण पूर्व एशिया में जलवायु परिवर्तन के कारण बाढ़ एवं सूखे की वजह से होने वाली बीमारियों एवं मृत्यु का खतरा भी बढ़ सकता है।

रिपोर्ट में कहा गया कि जलवायु परिवर्तन के मामले में भारत की अधिक मजबूत स्थिति नहीं होने के कारण यह जरूरी है कि इसके प्रभावों को कम करने के उपाय अपनाने के अलावा गरीबी कम करने के प्रयासों को तेज किया जाए।




परमाणु अनुसंधान के कोष पर केंद्र की खिंचाई

AJagran-Yahoo Report




Oct 26, 01:20 pm

नई दिल्ली। संसद की एक स्थायी समिति ने भाभा परमाणु अनुसंधान केंद्र [बीएआरसी] सहित देश के प्रमुख संस्थानों की अनुसंधान एवं विकास परियोजनाओं के लिए कोष में कमी किए जाने पर सरकार की जमकर खिंचाई की है।

विज्ञान प्रौद्योगिकी पर्यावरण एवं वन मामलों की संसदीय समिति ने परमाणु ऊर्जा विभाग से कहा है कि वह अपने कार्यक्रमों को आगे बढ़ाने के लिए पर्याप्त कोष आवंटन का मामला आगे बढ़ाए। समिति ने पाया कि बीएआरसी इंदिरा गांधी सेंटर फार एटामिक रिसर्च, वेरिएबल एनर्जी साइक्लोट्रोन सेंटर, राजा रमन्ना सेंटर फार एडवांस्ड टेक्नोलॉजी, टाटा इंस्टीट्यूट आफ फंडामेंटल रिसर्च सहित विभिन्न संस्थानों में अनुसंधान एवं विकास की योजनाओं के लिए कोष में कटौती कर दी गई।

समिति ने अपनी रिपोर्ट में कहा है कि प्रमुख प्रौद्योगिकियों के व्यापक अनुसंधान एवं विकास में जुटे अग्रणी संस्थानों के कोष में कटौती की गई है। निश्चित रूप से इससे परमाणु ऊर्जा के लिए किए जा रहे अनुसंधान एवं विकास पर असर पड़ेगा। रिपोर्ट में कहा गया है कि समिति यह नहीं समझ पा रही है कि कोष आवंटन में कटौती के बाद विभाग परमाणु ऊर्जा के क्षेत्र में अपने लक्ष्य हासिल कैसे करेगा।

समिति ने उम्मीद जताई है कि भविष्य में योजना आयोग और वित्त मंत्रालय विभाग के आवंटन को अंतिम रूप देते समय पूरी सावधानी बरतेंगे। सरकार ने समिति को बताया कि उसने वित्त मंत्रालय और योजना आयोग का ध्यान इस ओर आकर्षित किया है और भविष्य में विभाग के आवंटन को अंतिम रूप देते समय पूरी सावधानी बरती जाएगी। समिति ने कहा कि परमाणु ऊर्जा विभाग को अपने महत्वपूर्ण कार्यक्रमों एवं परियोजनाओं के लिए व्यापक आवंटन की मांग को जोरदार तरीके से आगे बढ़ाना चाहिए ताकि बजट अनुमान में इसके लिए पर्याप्त आवंटन सुनिश्चित हो सके। समिति ने यह भी कहा कि विभाग ने बजट आवंटन का प्रस्ताव रखने या उसे अंतिम रूप देने से पहले चल रही परियोजनाओं एवं कार्यक्रमों की प्रगति की निगरानी एवं समीक्षा के लिए जो निगरानी प्रणाली विकसित की है उसे भी यह सुनिश्चित करना चाहिए कि कोष में कटौती की कोई संभावना न रहे। सरकार ने समिति को बताया कि वर्तमान निगरानी प्रणाली कारगर तरीके से काम कर रही है।




Thursday, October 23, 2008

PSLV-C11 Successfully Launches Chandrayaan-1


 
PRESS RELEASE
Date Released: Wednesday, October 22, 2008
Source: Indian Space Research Organisation - Comments Comments 

image

In its fourteenth flight conducted from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota this morning (October 22, 2008), the Indian Space Research Organisation's (ISRO's) Polar Satellite Launch Vehicle, PSLV-C11, successfully launched the 1380 kg Chandrayaan-1 spacecraft into a transfer orbit with a perigee (nearest point to Earth) of 255 km and an apogee (farthest point to Earth) of 22,860 km, inclined at an angle of 17.9 deg to the equator.

After a 52 hour count down, PSLV-C11 lifted off from the Second Launch Pad at SDSC SHAR at 06:22 Hrs Indian Standard Time (IST) with the ignition of the core first stage. The important flight events included the separation of the first stage, ignition of the second stage, separation of the payload fairing at about 116 km altitude after the vehicle had cleared the dense atmosphere, second stage separation, third stage ignition, third stage separation, fourth stage ignition and fourth stage cut-off.

PSLV-C11 is the uprated version of ISRO's Polar Satellite Launch Vehicle in its standard configuration. Weighing 320 tonnes at lift-off, the vehicle uses larger strap-on motors (PSOM-XL) to achieve higher payload capability. PSOM-XL uses 12 tonnes of solid propellants instead of 9 tonnes used in the earlier configuration of PSLV. PSLV is a four stage launch vehicle employing both solid and liquid propulsion stages. PSLV is the trusted workhorse launch Vehicle of ISRO. During 1993-2008 period, PSLV had fourteen launches of which thirteen (including today's launch) are consecutively successful. PSLV has repeatedly proved its reliability and versatility by launching 30 spacecraft (14 Indian and 16 for international customers) into a variety of orbits so far.

Vikram Sarabhai Space Centre (VSSC), Thiruvananthapuram, designed and developed PSLV. ISRO Inertial Systems Unit (IISU) at Thiruvananthapuram developed the inertial systems. The Liquid Propulsion Systems Centre (LPSC), also at Thiruvananthapuram, developed the liquid propulsion stages for the second and fourth stages of PSLV as well as reaction control systems. SDSC SHAR processed the solid propellant motors and carried out launch operations. ISRO Telemetry, Tracking and Command Network (ISTRAC) provided telemetry, tracking and command support.

Chandrayaan-1 is India's first spacecraft mission beyond Earth's orbit. It aims to further expand our knowledge about Earth's only natural satellite - the moon. With well-defined objectives, Chandrayaan-1 mission intends to put an unmanned spacecraft into an orbit around the moon and to perform remote sensing of our nearest celestial neighbour for about two years using eleven scientific instruments built in India and five other countries.

The primary objectives of Chandrayaan-1 are:

* To place an unmanned spacecraft in an orbit around the moon
* To conduct mineralogical and chemical mapping of the lunar surface
* To upgrade the technological base in the country

Chandrayaan-1 aims to achieve these well-defined objectives through high-resolution remote sensing of moon in the visible, near infrared, microwave and X-ray regions of the electromagnetic spectrum. With this, preparation of a 3-dimensional atlas of the lunar surface and chemical and mineralogical mapping of entire lunar surface is envisaged.

PSLV placed the Chandrayaan-1 spacecraft into a highly elliptical Transfer Orbit (TO) around the earth. Later, through a series of highly complex manoeuvres, the desired trajectories will be achieved. After circling the Earth in its Transfer Orbit, Chandrayaan-1 spacecraft will be taken into more elliptical 'Extended Transfer Orbits' by repeatedly firing its Liquid Apogee Motor (LAM) in a pr-determined sequence. Subsequently, the LAM is again fired to make the spacecraft to travel to the vicinity of the moon.

When it reaches the vicinity of the Moon and passes at a few hundred kilometers from it, its LAM is fired again so that the spacecraft slows down sufficiently to enable the gravity of the moon to capture it into an elliptical orbit.

Following this, the height of the spacecraft's orbit around the moon is reduced in steps. After a careful and detailed observation of the orbit perturbations there, the orbital height of Chandrayaan-1 will be finally lowered to its intended 100 km height from the lunar surface. Moon Impact Probe will be ejected from Chandrayaan-1 spacecraft at the earliest opportunity to hit the lunar surface in a chosen area.

Later, cameras and other scientific instruments are turned ON and thoroughly tested. This leads to the operational phase of the mission. This phase lasts for about two years during which Chandrayaan-1 spacecraft explores the lunar surface with its array of instruments that includes cameras, spectrometers and SAR.

The Payloads: There are 11 payloads (scientific instruments) through which Chandrayaan-1 intends to achieve its scientific objectives.

They include five instruments designed and developed in India, three instruments from European Space Agency (one of which is developed jointly with India and the other with Indian contribution), one from Bulgaria and two from the United States.

The Indian payloads of Chandrayaan-1 are:

Terrain Mapping Camera (TMC), a CCD camera that maps the topography of the moon, which helps in better understanding of the lunar evolution process.

Hyperspectral Imager (HySI), another CCD camera, is designed for mapping of the minerals on the lunar surface as well as for understanding the mineralogical composition of Moon's interior.

Lunar Laser Ranging Instrument (LLRI) provides necessary data for accurately determining the height of lunar surface features.

High Energy X-ray Spectrometer (HEX) is designed to help explore the possibility of identifying Polar Regions covered by thick water-ice deposits as well as in identifying regions of high Uranium and Thorium concentrations.

Moon Impact Probe (MIP) demonstrates the technologies required for landing a probe at the desired location on the moon. It is also intended to qualify some of the technologies related to future soft landing missions.

The six international payloads of Chandrayaan-1 are:

Chandrayaan-1 Imaging X ray Spectrometer (C1XS), an ESA payload and jointly developed by Rutherford Appleton Laboratory of England and ISRO Satellite Centre, Bangalore, intends is to carry out high quality mapping of the moon using X-ray fluorescence technique for finding the presnce of Magnesium, Aluminium, Silicon, Iron and Titanium distributed over the surface of the Moon.

Smart Near Infrared Spectrometer (SIR-2), another ESA payload, developed by Max Plank Institute of Germany, aims to study the lunar surface to explore the mineral resources and the formation of its surface features.

Sub kiloelectronvolt Atom Reflecting Analyser (SAR), the third payload from ESA, is built by Swedish Institute of Space Physics and Space Physics Laboratory of Vikram Sarabhai Space Centre, Tiruvananthapuram. The aim of this instrument is to study the surface composition of the moon and the magnetic anomalies associated with the surface of the moon.

Radiation Dose Monitor (RADOM), a payload developed by Bulgarian Academy of Sciences, aims to characterise the radiation environment in a region of space surrounding the moon.

Mini Synthetic Aperture Radar (MiniSAR) is one of the two scientific instruments from the USA and is from Johns Hopkins University's Applied Physics Laboratory and Naval Air Warfare Centre, USA through NASA. MiniSAR is mainly intended for detecting water ice in the permanently shadowed regions of the lunar poles up to a depth of a few meters.

Moon Mineralogy Mapper (M3) is an imaging spectrometer from Brown University and Jet Propulsion Laboratory of the US through NASA, is intended to assess and map lunar mineral resources at high spatial and spectral resolution.

The Spacecraft: Chandrayaan-1 spacecraft weighed about 1380 kg at the time of its launch and is a 1.5 m cuboid with a solar panel projecting from one of its sides. The spacecraft is powered by a single solar panel generating electrical power of 700 W. A Lithium ion battery supplies power when the solar panel is not illuminated by the sun. To make Chandrayaan-1 spacecraft to travel towards the Moon, its Liquid Apogee Motor (LAM) is used. Liquid propellants needed for LAM as well as thrusters are stored onboard the spacecraft. Chandrayaan-1 spacecraft's Dual Gimballed Antenna transmits the scientific data gathered by its eleven scientific instruments to Earth.

Chandrayaan-1 spacecraft was built at ISRO Satellite Centre, Bangalore with contributions from Vikram Sarabhai Space Centre (VSSC), Liquid Propulsion Systems Centre (LPSC) and ISRO Inertial Systems Unit (IISU) at Tiruvananthapuram, Space Applications Centre (SAC) and Physical Research Laboratory (PRL), Ahmedabad and Laboratory for Electro-optic Systems (LEOS), Bangalore.

The Ground Segment: The Ground facilities of Chandrayaan-1 perform the important task of receiving the health information as well as the scientific data from the spacecraft. It also transmits the radio commands to be sent to the spacecraft during all the phases of its mission. Besides, it processes and stores the scientific data sent by Chandrayaan-1 spacecraft.

ISRO Telemetry, Tracking and Command Network (ISTRAC) had a lead role in establishing the Ground Segment of Chandrayaan-1 with contributions from ISAC and SAC. The Ground Segment of Chandrayaan-1 consists of:

1. Indian Deep Space Network (IDSN)
2. Spacecraft Control Centre (SCC)
3. Indian Space Science Data Centre (ISSDC)

The Indian Deep Space Network receives the data sent by the Chandrayaan-1 spacecraft. Besides, it sends commands to the spacecraft at a power level of upto 20 kilowatts. IDSN consists of two large parabolic antennas - one with 18 m diameter and the other 32 m diameter - at Byalalu, situated at a distance of about 35 km from Bangalore. Of these the 32 m antenna with its 'seven mirror beam waveguide system', was indigenously designed, developed, built, installed, tested and qualified. The 18 m antenna can support Chandrayaan-1 mission, but the 32m antenna can support spacecraft missions well beyond Moon.

The Spacecraft Control Centre, located near the ISTRAC campus at Peenya, North of Bangalore, is the focal point of all the operational activities of Chandrayaan-1 during all the phases of the mission.

The Indian Space Science Data Centre forms the third element of Chandrayaan-1 ground segment. Also located at Byalalu, ISSDC receives data from IDSN as well as other external stations that support Chandrayaan-1, stores, processes, archives, retrieves and distributes scientific data sent by Chandrayaan-1 payloads to the user agencies.

OR Read in the URL:



Wednesday, October 22, 2008

NASA Mercury Probe Beams Images of Mile-High Cliffs, Craters


By Demian McLean

See the Photos of Mercury as seen never before in the link

Oct. 8 (Bloomberg) -- NASA's Messenger probe beamed images of Mercury's cliffs and craters back to Earth, expanding astronomers' understanding of the planet nearest the sun and furthering the U.S. goal of mapping the entire surface.

The car-sized Messenger flew as close as 125 miles (200 kilometers) above Mercury's scarred, rocky surface, NASA said yesterday. It was the probe's second pass since January and revealed about one-third of Mercury, an area never seen by scientists.

``There are some fantastic features, including prominent lines that emanate from crater impacts that run along the entire face of the planet,'' said Jeff McNutt, a mission project scientist at Johns Hopkins University'sApplied Physics Laboratory in Laurel, Maryland. ``And some cliffs stretch almost a mile high.''

Mercury's surface, pockmarked with craters, is the solar system's oldest and least disturbed since the planets were formed some 4 billion years ago. The images may offer clues about their formation.

Mercury has the most extreme temperature range of any planet in the system, with days as hot as 800 degrees Fahrenheit (426 Celsius) and nights as cold as 300 degrees below zero.

The sun has long since baked off any atmosphere the planet had, which means Mercury lacks the weathering that Earth and other planets have endured, McNutt said. The planet has also had few recent tectonic upheavals.

`Rosetta Stone'

``In one sense, Mercury is the Rosetta Stone of planets in the inner solar system,'' McNutt said, referring to the stone tablet that helped archaeologists unlock the meaning of ancient Egyptian writing.

Messenger, launched by the National Aeronautics and Space Administration four years ago, is the first probe to visit Mercury since 1975, when Mariner 10 photographed less than half the planet.

About 95 percent of the surface has now been imaged. The final portion will be photographed in 2011, when Messenger returns for an extended orbit.

The spacecraft is more than halfway through a journey of almost 5 billion miles, including 15 trips around the sun. Messenger flew past Venus in 2006 and 2007.

To contact the reporter on this story: Demian McLean in Washington atdmclean8@bloomberg.net.


Using Math to Explain How Life on Earth Began

October, 2008 in What's Next | 13 comments | Post a comment


How did self-replicating molecules come to dominate the early Earth? Using the mathematics of evolutionary dynamics, Martin A. Nowak can explain the change from no life to life

By Heather Wax

 
Email this Article Print this Article    Text Size Graphic Decrease font Enlarge font  
Share 
 
 Reddit  Review it on NewsTrust    
 Fark  
 

MARTIN A. NOWAK
A BIG DEAL: Lured to Harvard University in 2003 when he was granted the schools first joint appointment between the math and biology departments.
NUMBERS GAME: Coined the term "evolutionary dynamics," which mathematically models how populations of genes, organisms and other biological entities change over time.
IN THE BEGINNING: Uses dynamical equations to probe whether the evolutionary force of selection preceded replication, a process that could explain how the polymers of life came to be.
Erik Jacobs Jacobs Photographic

Back in March the press went crazy for Martin A. Nowak’s study on the value of punishment. A Harvard University mathematician and biologist, Nowak had signed up some 100 students to play a computer game in which they used dimes to punish and reward one another. The popular belief was that costly punishment would promote cooperation between two equals, but Nowak and his colleagues proved the theory wrong. Instead they found that punishment often triggers a spiral of retaliation, making it detrimental and destructive rather than beneficial. Far from gaining, people who punish tend to escalate conflict, worsen their fortunes and eventually lose out. “Nice guys finish first,” headlines cheered.

It wasn’t the first time Nowak’s computer simulations and mathematics forced a rethinking of a complex phenomenon. In 2002 he worked out equations that can predict the way cancer evolves and spreads, such as when mutations emerge in a metastasis and chromosomes become unstable. And in the early 1990s his model of disease progression demonstrated that HIV develops into AIDS only when the virus replicates fast enough so that the diversity of strains reaches a critical level, one that overwhelms the immune system. Immunologists later found out he had the mechanism right [see “How HIV Defeats the Immune System,” by Martin A. Nowak and Andrew J. McMichael; Scientific American, August 1995]. Now Nowak is out to do it again, this time by modeling the origin of life. Specifically, he is trying to capture “the transition from no life to life,” he says.

Trained as a biochemist, the 43-year-old Nowak believes that mathematics is the “true language of science” and the key to unlocking the secrets of the past. He began exploring the mathematics of evolution as a graduate student at the University of Vienna, working with fellow Austrian Karl Sigmund, a leader in evolutionary game theory. Evolutionary dynamics, as Nowak named the field, involves creating formulas that describe the building blocks of the evolutionary process, such as selection, mutation, random genetic drift and population structure. These formulas track, for example, what happens when individuals with different characteristics reproduce at different rates and how a mutant can produce a lineage that takes over a population.

At the home of the Program for Evolutionary Dy namics at Harvard, the blackboard is chalked with equations. Nowak has been busy working on how to whittle down the emergence of life into the simplest possible chemical system that he can describe mathematically. He uses zeroes and ones to represent the very first chemical building blocks of life (most likely compounds based on adenine, thymine, guanine, cytosine or uracil). Nowak refers to them as monomers, which, in his system, randomly and spontaneously assemble into binary strings of information.

Nowak is now studying the chemical kinetics of this system, which means describing how strings with different sequences will grow. The fundamental principles of this idealized scheme, he says, will hold true for any laboratory-based chemical system in which monomers self-assemble, “in the same way as Newton’s equations describe how any planet goes around the sun, and it doesn’t matter what that planet is made of,” Nowak explains. “Math helps us to see what the most crucial and interesting experiment is. It describes a chemical system that can be built, and once it’s built, you can watch the origin of evolution.”

Could it really be that simple? Right now the system exists only on paper and in the computer. Although it is easy to model mathematically, making the system in the lab is tricky because it starts without any enzymes or templates to help the monomers assemble. “It’s hard to imagine an easy way to make nucleic acids,” says David W. Deamer, a biomolecular engineer at the University of California, Santa Cruz. “There had to be a starting material, but we’re very much into a murky area, and we don’t have good ideas about how to re-create it in the laboratory or how to get it to work using just chemistry and physics without the help of enzymes.”

PAGE 1  |  2  | Next»Read other pages in 
http://www.sciam.com/article.cfm?id=can-math-solve-origin-of-life&SID=mail&sc=emailfriend